Optimal compliance prediction models for estimating causal effects

نویسنده

  • Lang’o Odondi
چکیده

Understanding the causal relationship between intervention and outcome is at the heart of most research in the health sciences, and a variety of statistical methods have been developed to address causality. However, noncompliance with treatment assignment is a key source of complication for causal inference. Estimation of causal effects is likely to be compounded by the presence of noncompliance in both treatment arms of clinical trials where the intention-to-treat (ITT) analysis produces a biased estimator for the true causal estimate even under homogeneous treatment effects assumption. Principal stratification method has been developed to address such posttreatment complications by stratifying the population into partially latent classes (principal strata) based on potential values observed after randomization (e.g. noncompliance) under each of the levels of randomized intervention. The present work combines the two strategies of model selection and principal stratification with a novel application to a real data from a trial conducted to ascertain whether or not unopposed oestrogen (hormone replacement therapy HRT) reduced the risk of further cardiac events in postmenopausal women who survive a first myocardial infarction. The causal model links the resulting two marginal prediction models with a user-defined sensitivity parameter which is a function of the correlation between the two compliance behaviours. The method’s key assumption of conditional prediction is verified for our data via sensitivity analysis comparing results of causal estimates using different sets of predictors of compliance. We adjust for noncompliance in both treatment arms under a Bayesian framework to produce causal risk ratio estimates for each principal stratum. The results suggested better efficacy for HRT among those who would comply with it compared to those who would comply with either HRT or placebo: compliance with HRT treatment only and with either treatment allocation would reduce the risk for death (reinfarction) by 47%(25%) and 13%(60%) respectively. Paper presented at the 2nd Strathmore International Mathematics Conference (SIMC 2013), 12 16 August 2013, Strathmore University, Nairobi, Kenya.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating Causal Effects in Trials Involving Multi-Treatment Arms Subject to Non-compliance: A Bayesian framework.

Data analysis for randomized trials including multi-treatment arms is often complicated by subjects who do not comply with their treatment assignment. We discuss here methods of estimating treatment efficacy for randomized trials involving multi-treatment arms subject to non-compliance. One treatment effect of interest in the presence of non-compliance is the complier average causal effect (CAC...

متن کامل

The Application of Recursive Mixed Models for Estimating Genetic and Phenotypic Relationships between Calving Difficulty and Lactation Curve Traits in Iranian Holsteins: A Comparison with Standard Mixed Models

In the present study, records on 22872 first-parity Holsteins collected from 131 herds by the Animal Breeding and Improvement Center of Iran from 1995 to 2014 were considered to estimate genetic and phenotypic relationships between calving difficulty (CD) and the lactation curve traits, including initial milk yield (Ap), ascending (Bp) and descending (Cp) slope of the lactation curves, peak mil...

متن کامل

Graphical Models for Surrogates

Recently, it has been demonstrated that graphical models promise some potential for expressing causal concepts, see for example Pearl (2000), Lauritzen (2001), or Dawid (2002). The causal interpretation is most direct in models based on directed acyclic graphs, whereas causal interpretation for chain graph models generally is more subtle and complex (Lauritzen and Richardson 2002). In the artic...

متن کامل

Bayesian Regression Tree Models for Causal Inference: Regularization, Confounding, and Heterogeneous Effects

This paper develops a semi-parametric Bayesian regression model for estimating heterogeneous treatment effects from observational data. Standard nonlinear regression models, which may work quite well for prediction, can yield badly biased estimates of treatment effects when fit to data with strong confounding. Our Bayesian causal forests model avoids this problem by directly incorporating an es...

متن کامل

Adjustments and their Consequences— Collapsibility Analysis using Graphical Models

We review probabilistic and graphical rules for detecting situations in which a dependence of one variable on another is altered by adjusting for a third variable (i.e., non-collapsibility or noninvariance under adjustment), whether that dependence is causal or purely predictive. We focus on distinguishing situations in which adjustment will reduce, increase, or leave unchanged the degree of bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014